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Abstract
Emerging infectious diseases are a key threat to wildlife. Several fungal skin pathogens

have recently emerged and caused widespread mortality in several vertebrate groups, in-

cluding amphibians, bats, rattlesnakes and humans. White-nose syndrome, caused by the

fungal skin pathogen Pseudogymnoascus destructans, threatens several hibernating bat

species with extinction and there are few effective treatment strategies. The skin micro-

biome is increasingly understood to play a large role in determining disease outcome. We

isolated bacteria from the skin of four bat species, and co-cultured these isolates with P.
destructans to identify bacteria that might inhibit or kill P. destructans. We then conducted

two reciprocal challenge experiments in vitro with six bacterial isolates (all in the genus

Pseudomonas) to quantify the effect of these bacteria on the growth of P. destructans. All
six Pseudomonas isolates significantly inhibited growth of P. destructans compared to non-

inhibitory control bacteria, and two isolates performed significantly better than others in sup-

pressing P. destructans growth for at least 35 days. In both challenge experiments, the ex-

tent of suppression of P. destructans growth was dependent on the initial concentration of

P. destructans and the initial concentration of the bacterial isolate. These results show that

bacteria found naturally occurring on bats can inhibit the growth of P. destructans in vitro
and should be studied further as a possible probiotic to protect bats from white-nose syn-

drome. In addition, the presence of these bacteria may influence disease outcomes among

individuals, populations, and species.

Introduction
Emerging infectious diseases can have devastating impacts on wildlife, and they currently
threaten many species with extinction [1–4]. With an increase in anthropogenic disturbance
and rise in global trade and transportation, the threat posed by wildlife disease is likely to
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increase [5]. Wildlife diseases can be exceedingly challenging to manage because free ranging
animals are difficult to treat with drugs or vaccines, and many strategies require constant
human intervention[6]. For example, the re-establishment of Black-footed ferrets into their na-
tive range required vaccination of adults and young born each year for both plague and canine
distemper [7]. New approaches that do not require continued intervention are needed to re-
duce the impacts of these devastating diseases [8].

Several recently emerged wildlife pathogens infect host dermal tissue, and interactions with
host skin microbiota could play an important role in disease severity. Vertebrate skin is an eco-
system composed of different habitats which harbor diverse assemblages of microorganisms
[9]. Previously, studies of skin microbiota primarily examined the pathogenic roles of skin mi-
crobes, with little attention to the beneficial function that many microorganisms may provide
[10]. However, beneficial bacteria on skin can provide vital functions to their hosts, including
processing of skin proteins, freeing fatty acids to reduce invasion of transient microorganisms,
and inhibition of pathogenic microorganisms [11]. Some bacteria, termed probiotics, or benefi-
cial bacteria [12], have been developed to reduce the impact of a broad range of diseases.

Probiotics that can establish on hosts have the potential to provide a long-lasting solution
for managing disease and, unlike chemical fungicides, may be able to coevolve with a pathogen
[13]. Probiotics are regularly used in the biological control of disease in both aquaculture and
agriculture, but have yet to be widely implemented in controlling wildlife disease, possibly be-
cause of perceived risks and lack of demonstrated success [14–17]. Risks associated with aug-
menting micro-organisms on a host, which can either be ineffective or accidentally harmful,
can be minimized by using bacteria that naturally occur in the hosts’ environment [18]. Resis-
tant or tolerant species that are phylogenetically closely related to a heavily impacted species
may host bacteria that could serve as probiotics, and these bacteria may be more likely to be
able to colonizing the target species’ skin [18].

Here, we assess whether bacteria naturally occurring on bats can reduce the growth of Pseu-
dogymnoascus destructans, the pathogen that causes white-nose syndrome (WNS)[19]. White-
nose syndrome first emerged in Howe’s Cave, New York, in 2006, and spread quickly, causing
precipitous declines in hibernating bats throughout Eastern North America[2,20]. Four species
(Myotis septentrionalis,Myotis sodalis,Myotis lucifugus, and Perimyotis subflavus) have suf-
fered>90% declines in regional populations and one species,M. septentrionalis, is on a trajec-
tory towards extinction [2,20].Myotis septentrionalis has recently been proposed by the U.S.
Fish andWildlife Service for listing under the Endangered Species Act and has been listed
under the Canadian Species at Risk Act as Endangered.

Pseudogymnoascus destructans infects the dermal tissue of bats and grows optimally be-
tween 10–14°C [21], similar to the temperature of hibernating bats. Pseudogymnoascus destruc-
tans infection may disrupt bats’ physiological processes including heat and water loss and
electrolyte balance [22], and typically results in increased arousal frequency by hibernating
bats [19,23]. Increased arousal frequency may prematurely deplete bats’ fat stores resulting in
death approximately 70–120 days after infection, based on laboratory infection trials[19,22,24].
Individuals able to survive through hibernation until spring appear to clear infection and fully
recover [24,25]. However, these bats become re-infected the following fall, in part because
Pseudogymnoascus destructans is capable of persisting for long periods of time in the absence
of bats [26,27].

Currently, there are few management options that can reduce mortality in affected regions
[28]. Preliminary investigations of treatments to reduce mortality using antifungal drugs caused
higher mortality in the treated groups than control groups, possibly due to toxicity [29]. Other
proposed chemical treatment options have avoided the toxic effects of the direct application of
chemicals, but have yet to be validated in situ [30]. Thus, treatment options are urgently needed,
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and a probiotic may be an effective way to reduce WNS impacts if it could at least partially in-
hibit P. destructans growth and delay mortality long enough for bats to survive hibernation.

We cultured bacteria isolated from the skin of four species of hibernating bats from eastern
North America to determine whether naturally occurring bacterial species might exist within
the skin microbiome of bats that could inhibit growth of P. destructans. We then quantified the
anti-fungal efficacy of these bacteria across a range of concentrations in two
challenge experiments.

Methods

Sampling and isolating cutaneous microbes
We conducted sampling for cutaneous bacteria on hibernating bats at two hibernacula in New
York and two in Virginia (exact locations of study sites are not provided to protect sensitive
wildlife habitat). We rubbed sterile polyester swabs dipped in sterile water back and forth five
times along each bat’s forearm and muzzle. Swabs were frozen in 20% glycerol stock for later
culturing. We collected swabs from ten individuals from each of four species Eptesicus fuscus,
Myotis leibii,M. lucifugus, andM. sodalis.

Epidermal swab sample collection protocols for this study were approved by the University
of California, Santa Cruz IACUC (protocol # FrickW1106). Sample collection was permitted
by authorized state biologists from the New York Department of Environmental Conservation
and Virginia Department of Game and Inland Fisheries. Handling and sampling of endangered
species (Myotis sodalis) was conducted under the appropriate state and federal permits.

Each swab was plated on two types of general media, Reasoner’s 2A agar (R2A) and sabour-
aud dextrose agar (SDA), and plates were incubated at 9°C for three weeks. We classified bacte-
ria on each plate by morphotype, using color, growth form, and gram staining techniques. We
isolated one colony from each sample by morphotype (to reduce repeat sampling of the same
isolate) using a sterile inoculating loop and re-plated each isolate on R2A media and grew them
for 2–5 days at 9°C. Each isolate was cryo-banked by sampling from each of these colonies with
a sterile inoculating loop, placing the sample in 30% glycerol, and freezing it at -80C for
later use.

Pre-screen for bacteria with anti-P. destructans properties
We determined whether isolates could inhibit the growth of P. destructans using a challenge
protocol adapted from the National Committee for Clinical Laboratory Standards. All cultur-
ing was done on SDA. [31]. A suspension containing 1.7 x 107 P. destructans conidia/ml (quan-
tified using a hemocytometer) was prepared by flooding a 3 week-old culture of P. destructans
grown on SDA with 20 ml of 1X phosphate buffered saline with tween20 (PBST20). Colonies
were submersed for 5 minutes, and then gently rubbed with a sterile inoculating loop to free
the conidia. The supernatant was drawn off and placed into a 50ml falcon tube and vortexed to
homogenize the suspension. Each 90mm plate was inoculated with 200ul of the P. destructans
suspension and allowed to air dry for 10 minutes. We added bacteria on the plate already inoc-
ulated with P. destructans from a growing culture using pinpoint inoculation at three equally
spaced points on top of the dried P. destructans suspension. Bacteria cultures were grown from
frozen stock 24 hours earlier on SDA. Plates were placed into incubators at 9–10°C, which is
within the range that bats hibernate [32], and growth was monitored every other day for 14
days and on day 14 any bacteria that produced a zone of inhibition (a visible reduction of P.
destructans growth surrounding the bacterial colony) were included in subsequent challenge
experiments described below In addition to bacterial isolates from bats, a Pseudomonas fluores-
cens isolate PfA506 commonly used in biocontrol of agricultural fungal pathogens was included
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as a positive control [33], and two types of negative controls, 1) a sham inoculation with 20%
sterile glycerol stock, and 2) two bacteria isolated from bats in the genera Chryseobacterium
and Sphingomonas (both gram-negative rod shaped bacteria) that are not known to produce
anti-fungal compounds [31].

Identification of bacterial isolates
We identified bacterial isolates used in the following inhibition assays using PCR amplification
and DNA sequencing. DNA for PCR was obtained by suspending a small amount of a bacterial
colony in 100 μl of sterile deionized water (SDW) and lysing the cells at 95°C (10 min). Univer-
sal bacterial 16S rRNA gene primers (16S_F (5`- ACC GCG ATA ATA CGT CCC GAT CG—3`)
and 16S_R(5`- TGC GGA CGT GAA GTG CTA G -3`)) were used to amplify the ~1.5 kb 16S
rRNA gene fragment [34]. The following was added to each PCR template: 1 μl of crude lysate
DNA template, 1.5 μl of each 0.6 μM forward and reverse primer, and 5 μl of Taq 5X MM
(NEB) at 1X concentration, which contains 1.5 mMMgCl2, 2 mM dNTPs, and PCR buffer. Re-
action volumes were made up to 25 μl with SDW. The reaction conditions involved an initial
denaturation at 95°C for 3 minutes, followed by 35 cycles of denaturation at 95°C for 15 sec,
primer annealing for 15 seconds at 49°C, and extension for 90 seconds at 42°C. The 16S rRNA
gene sequences were compared with known sequences in the EMBL database using MEGA
BLAST (BLASTN 2.1.1, [35]) to identify the most similar sequence alignment. Pseudomonas
fluorescens isolate PfA506 was used to assure proper alignment of sequences.

Inhibition Assays
Two separate inhibition assays were performed. In the first inhibition assay, we determined the
ability of each bacterial isolate to grow on lawns of different starting concentrations of P.
destructans, and to produce a zone of inhibition in which P. destructans growth was either de-
layed, halted adjacent to the bacteria colony. In the second inhibition assay, we measured the
growth of P. destructans on a lawn of different starting concentrations of each bacterial isolate.

In the first inhibition assay, the growth of each bacterial isolate was quantified in media in-
oculated with four P. destructans concentrations estimated using hemocytometry (107, 106,
105, and 104 conidia/ml). After the P. destructans suspension was dry and conidia fixed to the
plate, we used a pipette to inoculate the plates with 0.1 μl of a 108 cfu/ml suspension of a given
bacterial isolate at three evenly spaced points on the plate. The bacterial suspension was pre-
pared by suspending whole colonies in 30% glycerol, and using an inoculating loop to suspend
the colony. Each treatment was replicated nine times, and cultures were grown at 9°C for 37
days. Zones of inhibition were quantified by measuring the distance from the edge of the bacte-
rial colony to the edge of the visible P. destructans growth every other day [31]. We also micro-
scopically examined the zones of inhibition on the final day of the experiment (day 43) to
characterize the effects of bacteria on the growth of P. destructans.

In the second inhibition assay we determined the ability of each bacterial isolate to prevent
growth of P. destructans across a series of six bacterial concentrations. Each bacterial isolate
was plated from cryobanked glycerol stock onto a Petri dish with SDA media and allowed to
incubate for two days at 9°C before being added to a 30% sterile glycerol suspension. The con-
centration of each isolate was standardized by making serial ten-fold dilutions of the culturing
stock and then counting the number of colony forming units (cfu) per ml. The bacteria glycerol
suspension was frozen at -20°C while calculating the concentration. Each stock was standard-
ized to the same concentration of 7.5x107 cfu/ml using 30% glycerol. We plated 50 μl of each
bacterial glycerol dilution on SDA in 60 mm Petri dishes. We used three replicates per treat-
ment for bacterial concentrations 106, 102, and 101 cfu/ml, and five replicates for
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concentrations 105, 104, and 103 cfu/ml. For the control plate, we added 50 μl of sterile 30%
glycerol solution to the plates and then inoculated with P. destructans using a pinpoint inocula-
tion. The diameter of the P. destructans colony was measured for a total of 42 days. Measure-
ments were made every other day for the first 14 days, and then once every seven days
thereafter until the end of the experiment.

We used cell-free supernatant plated on a lawn of P. destructans to determine if anti-fungal
compounds were being produced by the bacteria in the initial culture. We used cultures of
fresh bacteria grown in isolation, and co-cultured with P. destructans, in lysogeny broth. Cul-
tures were then centrifuged for 30 minutes and the supernatant was drawn off. We then inocu-
lated three plates with 50 μL of the supernatant on a lawn of P. destructans using the methods
described above.

Bacteria motility and chemotaxis
Bacteria motility experiments were conducted to assess whether the Pseudomonas isolates from
bats preferentially move towards P. destructans. A 0.3% agar SDA media was prepared and a
sterile inoculating loop was dipped into a 7.5x107 cfu/ml of bacterial suspension and then
stabbed ~5 cm into the soft agar for all nine bacterial isolates. To determine whether or not the
bacteria preferentially moved towards P. destructans, we repeated the same methods described
above, but included a small colony of P. destructans that was stabbed into the media on one
side of the tube. The tubes were incubated for 1 week at 10°C, and then stabs were visually in-
spected for signs of whether bacteria moved away from the initial stab or moved towards the P.
destructans stab.

Statistical analysis
We fit linear mixed effects models (function glmer in package lme4 [36] in R v. 3.02 [37]) with
day as a categorical random effect and bacteria type and concentration as fixed effects to exam-
ine the influence of bacteria type and serial dilution on the zone of inhibition (first inhibition
assay, S2 Table) and diameter of fungal colony (second inhibition assay, S3 Table). We fit five a
priori models including additive and interactive effects (S4 Table) and compared models using
Akaike’s Information Criterion (AIC) [38].

Results

Pre-screen for bacteria with anti-P. destructans properties
We isolated a total of 133 bacterial morphotypes from the 40 bats we swabbed. Four isolates
from E. fuscus (from 3 bats) and two isolates from two individualM. lucifugus inhibited P.
destructans growth in standard challenge assays (Table 1). These six bacteria were selected for
further testing in the two inhibition assays. All were identified as members of the genus Pseudo-
monas, with five of the six isolates most closely related to the Pseudomonas fluorescens group
and the other isolate (PA6) being most closely related to Pseudomonas abietaniphila
(HF952541) (S1 Table).

Inhibition assays
In the first inhibition assay, bacterial colonies initially expanded quickly and then plateaued in
size, with growth continuing for longer at lower initial concentrations of P. destructans in the
media (S1 Fig., S4 Table). Some bacterial isolates formed much larger colonies than others,
with PF1, PF2, and PF4 forming the largest colonies (S1 Fig.). The size of bacterial colonies in-
creased with decreasing initial concentrations of P. destructans (S1 Fig., S4 Table).
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Zones of inhibition could not be visualized until P. destructans growth was visible on days
9–11 (Fig. 1). At this time, zones of inhibition already differed significantly among bacterial
isolates and initial concentrations (Fig. 2, S2 Fig., and S5 Table). Two bacterial isolates, PF1
and PF2, generated larger zones of inhibition across most initial concentrations of P. destruc-
tans by the end of the experiment (S2 Table). Three isolates (PF1, PF2, and PF7) established
two zones, one where growth of P. destructans was suspended immediately upon germination
(Fig. 1g), and another outside of this zone where growth was arrested, but only after the myceli-
al mat had begun to develop (Fig. 1f). Zones of inhibition on the last day of the experiment
(day 37) increased with increasing initial concentrations of P. destructans for the Pseudomonas
isolates showing the strongest inhibition (Fig. 2; PF1, PF2, and PF4; all concentration slopes
were significantly negative, all p-values<0.03). For the other four Pseudomonas isolates, the
zone of inhibition was either variable across concentrations (Fig. 2; PF3, PF5, PA6) or increased
with decreasing initial P. destructans concentration (PF7; concentration coef. 1.72 ± 0.64,
p = 0.008). Two isolates, PF1 and PF2, out-performed the reference P. fluorescens strains (PF7;
PfA506) at all initial concentrations with at least a two-fold difference in zone of inhibition
(Fig. 2). The two control bacteria (Chryseobacterium sp. and Sphingomonas sp.) and the sham-
inoculated control produced no zones of inhibition (Fig. 2).

In the second inhibition experiment, P. destructans grew optimally in the absence of bacte-
ria, and on media with low initial concentrations of the control bacteria (Fig. 3). By the end of
the experiment, the size of P. destructans colonies differed between bacterial isolates and initial
concentrations and the effect of bacterial isolate varied among initial concentrations (S3 and S6
Tables). At the highest initial concentration (106 cells/ml), all bacteria (including the two con-
trol bacteria) formed lawns and all reduced growth of P. destructans. As the starting concentra-
tion of the bacteria lawn decreased, fewer isolates significantly reduced the growth of P.
destructans. At the three highest initial bacterial concentrations (106–104 cfu/ml), only isolates
PF1, PF2, and PF5 completely suppressed P. destructans growth for the duration of the experi-
ment (day 42; S6 Table). At the three lowest initial concentrations of the bacteria, where there
were relatively few colonies, two Pseudomonas isolates, PF1 and PF2 performed significantly
better than other isolates in reducing P. destructans growth and prevented P. destructans from
growing for the full duration of the experiment (Fig. 3, S6 Table). In both experiments, isolates
PF1 and PF2 produced the maximum reduction of mycelial growth across all concentrations,
regardless of the way the isolates and P. destructans were co-cultured.

Cell-free supernatant drawn from liquid bacterial cultures had no effects on the growth of P.
destructans. Pseudogymnoascus destructans grew uniformly across all plates, regardless of
whether the supernatant added to the plates was from bacteria co-cultured with P. destructans
or cultured alone.

Table 1. Bacteria isolated fromMyotis lucifugus and Eptesicus fuscus used in challenge experiments.

Graph ID Bat Species Collection County Collection Date Phylogenetic affiliation Motile

CHR1 M. lucifugus Ulster, NY 8-Apr-12 Chryseobacterium sp. No

SPH2 E. fuscus Bath, VA 29-Mar-12 Sphingomonas sp. No

PF1 E. fuscus Bath, VA 28-Mar-12 Pseudomonas sp. Yes

PF2 E. fuscus Bath, VA 29-Mar-12 Pseudomonas sp. Yes

PF3 M. lucifugus Highland, VA 19-Mar-12 Pseudomonas sp. Yes

PF4 M. lucifugus Bath, VA 29-Mar-12 Pseudomonas sp. Yes

PF5 E. fuscus Albany, NY Jan-09 Pseudomonas sp. Yes

PA6 E. fuscus Bath, VA 29-Mar-12 P. abietaniphila Yes

PF7 NA NA NA P. fluorescens A506 Yes

doi:10.1371/journal.pone.0121329.t001
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Bacteria motility and chemotaxis
All seven Pseudomonas isolates exhibited signs of motility but no chemotaxis towards P.
destructans colonies was observed. Using microscopy, two of the Pseudomonas isolates, PF1
and PF2, were observed dispersing along P. destructans hyphae. The two control bacteria
showed no signs of motility (Table 1).

Fig 1. Challenge plates showing the inhibition of Pseudogymnoascus destructans. Bacteria were plated with an initial starting concentration of 104 cfu/
ml (PF2). The plate (a) shows no visible P. destructans growth on day 43, compared to the (b) control plate showing uninhibited P. destructans colony growth
at day 43. (d) The zones of inhibition produced by one of the top performing P. fluorescens isolates (PF2) compared to the sham inoculated control (c) and a
widely used strain of P. fluorescens, (e; PF7: PfA506). There are two distinct zones of inhibition produced by the top performing strain (as shown in panel d)
indicated by the grey solid circle and the dashed grey circle. Microscopic images of the inner and outer zones are shown in panels (f) and (g). We used gram
staining techniques to help better visualize conidia (purple) and hyphae (pink) (scale bars, 10 μm). Within the first zone, indicated by the dark ring
surrounding the yellow bacteria colony (PF2), the bacteria either arrested or delayed conidia growth, (g) which can be seen by the small hyphael extension
from the conidia. Outside of this first zone, the growth of P. destructans was much more extensive (f), producing a mycelial network before its growth
was arrested.

doi:10.1371/journal.pone.0121329.g001
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Fig 2. First inhibition assaymeasuring the width of the zone of inhibition produced by bacteria on a lawn of P. destructans. The zones of inhibition
produced by bacterial isolates when inoculated on a plate with four concentrations of P. destructans. Lines denoted by the same letter do not differ
significantly on the last day of the experiment (S5 Table). CHR and SPH are isolates in the genusChryseobacterium and Sphingomonas that are not known
to produce antifungal compounds. The control is an inoculation of 30% glycerol stock. PF1-5,7 and PA6 are all isolates in the genus Pseudomonas.

doi:10.1371/journal.pone.0121329.g002

Fig 3. Second inhibition assaymeasuring the diameter of P. destructans colonies grown on a lawn of bacteria. Pseudogymnoascus destructans was
plated with nine bacterial isolates at six different concentrations (highest to lowest, left to right). Lines denoted by the same letter did not differ significantly on
the last day of the experiment. CHR and SPH are isolates in the genusChryseobacterium and Sphingomonas that are not known to produce antifungal
compounds. The Control is a sham inoculation of 30% glycerol stock. PF1-7 and PA6 are all isolates in the genus Pseudomonas.

doi:10.1371/journal.pone.0121329.g003
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Discussion
As the threat of emerging infectious disease grows with increased global travel and trade [5],
new ways of managing wildlife disease must be considered [8]. Traditionally, fungal pathogens
have been managed using chemical fungicides [39], but toxicity effects on non-target organ-
isms, and application challenges makes it difficult for broad-scale use on wildlife fungal patho-
gens [29]. The results from our two sets of experiments demonstrate that in vivo, bacteria
cultured from bats can inhibit the growth of P. destructans. Our results suggest that augmenta-
tion prior to P. destructans exposure might reduce colonization, whereas bacterial augmenta-
tion after exposure could displace P. destructans. Our results also suggest that a key challenge
for successful treatment is applying bacteria such that they will persist on bat skin at high
enough concentrations to limit P. destructans growth below levels that cause lethal disease.

The bacteria we isolated from bats, Pseudomonas spp., is ubiquitous in the environment and
is well known to have anti-fungal properties [40]. The group of bacteria that these isolates were
most closely related to, Pseudomonas fluorescens, has previously been detected on several mam-
mals (including bats), as well as amphibians, fish, and plants [41–44]. Members of the P. fluor-
escens group are known to produce a suite of antifungal compounds that can inhibit many
plant fungal pathogens [45] as well as the amphibian fungal pathogens, Batrachochytrium den-
drobatidis [46]. Some strains in the P. fluorescens group are also capable of producing mycolys-
ing enzymes that can colonize the mycelia and conidia of fungi rendering them no longer
viable [47]. All of our Pseudomonas spp. isolates were motile, which might allow them to use
the mycelial networks of fungal colonies to aid in dispersal and colonization [48]. All of these
attributes make P. fluorescens ideal as a proposed candidate to be tested as a biological control
agent for reducing infection intensity and increasing survival of bats exposed to P. destructans.

Whether these antifungal bacteria that naturally occur on bat skin could partially explain
differences in mortality fromWNS among populations and species is currently unknown. The
isolates with strongest inhibitory properties were cultured from E. fuscus, which has lower mor-
tality fromWNS compared to other species [2]. However, we also isolated two strains of P.
fluorescens (PF3 and PF4) that showed moderate P. destructans inhibition fromM. lucifugus, a
species that has suffered severe mortality fromWNS[2,20]. Further research is needed to deter-
mine the relative abundance, distribution, and inhibitory ability of P. fluorescens on wild bats
and whether presence and abundance of P. fluorescens influences disease severity.

The next steps in developing a probiotic for WNS should include testing, in vivo, one or
more of the P. fluorescens strains that we isolated against P. destructans using a bat species that
suffers high disease mortality fromWNS, such asM. lucifugus,M. septentrionalis, or Perimyotis
subflavus [2]. Studies with live hibernating bats will determine whether interactions observed
in vitro have functional significance in disease outcomes for bat species currently threatened
by WNS.

Supporting Information
S1 Fig. Bacterial colony size during first inhibition assay. Colony size of nine bacterial iso-
lates grown on plates inoculated with four different concentrations of Pseudogymnoascus
destructans with fungal concentrations decreasing from left to right. CHR and SPH are isolates
in the genus Chryseobacterium and Sphingomonas that are not known to produce antifungal
compounds. The Control is a sham inoculation of 30% glycerol stock. PF1-7 and PA6 are bac-
terial isolates in the genus Pseudomonas.
(TIF)
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four different initial concentrations of P. destructans on day 37 for the data shown in
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S6 Table. Coefficients for linear models of the influence of nine bacterial isolates on the di-
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